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COMMUNICATION THEORY APPLIED TO ANTENNA SYSTEMS 

BY 
William Welch 

The properties of an antenna system are  determined not only by the antenna 
but also by the electronics associated with the antenna. For this reason, there is 
an important area in the field of antenna research where the antenna is treated 
a s  a signal processing device rather than a simple transducer. Many of the 
published papers that analyze this type of antenna system use a terminology 
which is closer to that of communication theory than antenna theory. To under- 
stand such papers the reader must be knowledgeable in both fields. This is not 
the usual case and the purpose of this report is to define some of the fundamental 
concepts of communication theory and show how they can be applied to antenna 
systems. The report is divided into two parts: chapters 11 and 111 review some 
results of Fourier (harmonic) analysis and linear circuit theory; chapters IV and 
V develop analogous results for antenna systems. The emphasis throughout the 
report has been placed on the physical interpretation of concepts and not on the 
mathematics used to derive or define the concepts. 

II. REVIEW OF HARMONIC ANALYSIS 

A function g ( c )  is related to its complex spectrum G( q) by the Fourier 
transform pair: 
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In order for the function to have a complex spectrum the integral of equation (2) 
must converge. This condition will be satisfied if g( 5') is absolutely integrable, 
that is, 

is finite. 

It is convenient to use the notation 

to indicate that the functions g(& and C( 7 )  are related by the Fourier transforms 
of equations (1) and (2). The double-headed arrow signifies a reversible trans- 
formation between the two functions. 

The significance of the complex spectrum is apparent when equation (1) is 
written in the form 

The integrand is a complex sinusoid of frequency 7 and infinitesimal amplitude 
G( 7)dq. Equation (3) states that the function g( e )  is synthesized by an infinite 
number of sinusoids of all frequencies q in the continuous infinite range (-a, a). 
The amplitude density spectrum I C( 77)  1 does not give the actual amplitudes of 
the sinusoids because all amplitudes are of infinitesimal magnitude; it is rather 
a function which shows the relative magnitudes of the infinity of complex sinusoids 
used to synthesize the function g(&) .  

The physical significances of the transform variables 6 and q depend on the 
problem. Most often the variables are the time t (seconds) and the temporal 
frequency f (cycles/second) but other physical variables occur. It is important 
to note that the concept of a spectrum is not restricted to sinusoids of temporal 
frequency. 
component 
cycles per 

The sinusoidal function of 7, C(7) eJ%cq, is still called the Fourier 
of g g )  with frequency 77 even though q may have units other than 
second. 
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If a time function g( t ) represents a voltage waveform, its complex spectrum 
G( f ) will have the units of volts per unit frequency (volt-sec). The function 

W f )  = I G ( f ) 1 2  

has the units of watt-seconds per unit frequency and is called the energy density 
spectrum of g( t ). If g( t ) is applied to a 1-ohm load of plre resistance, the 
total energy consumed by the resistance will be given by the integral oi Q( i ) over 
all frequencies. Using equations (1) and (2) it can be shownil; that the Fourier 
transform of the energy density spectrum is 

The integral states that the function g( t ) is multiplied by itself delayed 7 seconds 
and the product integrated over all time. The result is a hnction only of the 
displacement 7 and is indicated by 

R ( 7 )  is known as the autocorrelation function of g( t )  . 
Figure la illustrates the relationships between g( t ) and its varicms trans- 

forms. The single-headed arrows are  used to indicate the irreversible trans- 
formations between g(  t ) and its autocorrelation function and between the complex 
spectrum and the energy density spectrum. 

If g( t ) is a random signal, the integral of equation (2) will not converge and 
the signal has no complex spectrum. The autocorrelation function for the random 

(l)Statistical Theory of Communication, Y. W. Lee, Wiley pp. 36-37. 
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signal is defined as 

i.e. the autocorrelation function is the time average of the random function multi- 
plied by itself delayed. If the signal results from a stationary random process 
(one whose statistics are independent of time), the autocorrelation functhn will 
depend only on the delay 7 and is indicated by 

The Fourier transform of the autocorrelation function has the units of watts per 
unit frequency and is defined as the power density spectrum of g( t ) . Figure lb 

r I 
(a) g ( t )  is  nonrandom signal with finite energy 

(b) g(t)  i s  stationary random signal 

Figure 1 - Relationships Between a Signal and its Transforms 
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illustrates the relationships between the random function and its various trans- 
forms. Notice that the only way to determine the power density spectrum of a 
stationary random signal is by means of the autocorrelation function. This is 
one reason for the importance of autocorrelation functions in analyses treating 
random signals. Figure 2 shows the various transforms for the pulse signal 

g( t )  - - A -3 T 5-7- < -  T 
2 

The complex spectrum is calculated from equation (2) as 

The energy density spectrum is given by 

The determination of the autocorrelation function is simplified by a graphical 
interpretation of the definition (4). At 7 
simply the area under the function squared 

0, the autocorrelation function is 

m 

R ( 0 )  = 1- g2(t) dt = E' T 
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(a) signal 

(b) complex spectrum 

(P( f )/AT 
t 

2 3 
T - 1 

T T - 

(c)  energy density spectrum 

R(7) t 

(d) autocarelation function 

Figure 2 - Transforms of a Pulse Signal 
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c 

As 17 1 increases, the area of overlap between g( t ) and g( t t 7) will decrease 
linearly. Beyond 171 = T there is no overlap and the autocorrelation function is 
equal to zero. The function therefore has the triangular shape shown in Figure 
2d. 

III. REVIEW OF LINEAR CIRCUIT ANALYSIS 

Consider the circuit shown in Figure 3. The i n p t  and output of the system 
are functions only of time and we indicate that x(t) produces the output y( t ) by 
the notation x(t) 3 y(t). The function h( t ) is the response of the circuit to a 
unit-impulse excitation, that is, 8(t) 3 h(t), where the unit impulse is a mathe- 
matical function defined by the following properties: 

a)  8 ( t )  = 0 t 7 0 

8 ( t )  dt = 1 i f  range of integration includes t = 0 

= 0 otherwise 

The circuit is assumed to satisfy the following conditions: 

1. Linearitv 

Adding two inputs results in adding their outputs. Also if an input is 
multiplied by a real constant, its output is multiplied by the same constant 

2. Time-Invariance 

The input-output relation of the circuit is invariant to a translation of the time 
axis. Satisfaction of these two conditions leads directly to the instantaneous 
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input-output relation of the system 

If x( t ) is a nonrandom signal, it will possess a Fourier transform and 
equation (5) can be transformed to yield 

Y ( f )  = X ( f )  H ( f )  

Equation (6) relates the input and output spectrums by means of W f ) ,  the trans- 
form of the inpulse-response function. H( f ) is known as the system transfer 
function. 

h( t ) = unit-impulse response function 

H( f ) = System transfer function 

Figure 3 - Linear Circuit Functions 

Suppose that the circuit of Figure 3 is to be used as a filter, that is, we want 
the system to pass the inplt signal x( t ) undistorted and block all other signals. 
The output signal will be an exact replica of the input if the spectrums are 
identical; according to (6) this condition will be met if the system transfer func- 
tion is constant over the bandwidth occupied by the input signal. If H(f) is zero 
outside this bandwidth, it will prevent unwanted signals from appearing at the 
output. Theoretically, it is possible to synthesize a circuit with the desired 
transfer junction because any practical time signal x( t ) will have a spectrum 
that is band limited in frequency. 
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IV. APERTURE THEORY 

According to  the scalar theory of diffraction, if all sources of an electro- 
magnetic field a re  enclosed by a surface, then knowledge of the field (or its 
spatial derivative) on the surface is sufficient to determine the field at any point 
in the source-free region. In many practical problems the surface may be taken 
as an infinite plane and the field on the plane will be zero except over a finite 
area. This area through which power flow is confined is termed an aperture even 
thcnigh no phvsical hole exists. For convenience, we can assume that the infinite 
plane is the xp-plane as shown in Figure 4. 

Let E(x/X, y/X) indicate the transverse electric field over the aperture d 
A(S, S,) be the two-dimensional Fourier transform of the aperture field. The 
Fourier transform pair may be written in the following form: 

i 

J 
Y 

Figure 4 - Coordinate System for Aperture Antennas 
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where 

S, 1 s i n  8 cos @ 

S, = s i n  6 sin 4 

A = wavelength 

The integrand of equation (7) is the mathematical representation of a plane wave 
of amplitude A(S, S2)dS1dS, traveling in the S ,  , S, direction. Equation (7), then, 
synthesizes the aperture field distribution by superimposing an infinite number 
of plane waves traveling in all directions. The function A(S, S,) which gives the 
relative amplitudes of the plane waves is known as the angular spectrum. 

The field at any point P in the source-free region of space is given by 

where 
field point (x, y, z), 
k = %/A. At large distances from the aperture, equation (9) can be approximated 
by 

is a unit vector in the direction from the aperture point (x, Y) to the 
is a unit vector in the direction of the ray at (x, y), and 

where r is the distance from the origin to the field point P. The function A(S, S2), 
therefore, gives the dependence of the field on the angular variables and may be 
identified as the conventional angular radiation pattern. Since the angular spec- 
trum, by definition, is the Fourier transform of the aperture field, the far-field 
radiation pattern is also the Fourier transform of the aperture field. 

Rather than using two-dimensional Fourier transforms, it will  be convenient 
to confine our attention to one-dimensional apertures with an aperture field distri- 
bution E( x/A) and far-field radiation pattern A( sin 6' ). 
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Analogous to the energy-density spectrum of time signals we have the 
function 

which, is the far-field power pattern of the antenna. The Fourier transform of 
the p v e r  @tern i s  equal to the aperture autocorrelation function 

Equation (10) states that the autocorrelation function is found by multiplying the 
field at the point x/h in the aperture by the field at another point separated by 
S/A and then integrating the product over all points of the aperture. The result 
is a function only of the separation between the field points. Figure 5 summarizes 
the relationships between the aperture field distribution and its various trans- 
forms; Figure 6 illustrates the transforms for a uniformly illuminated aperture. 

Figure 5 - Relationships Between an Aperture Field and Its Transforms 

An important result of the Fourier transform relation between an aperture 
field and the far-field pattern is the following: 

If 
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where 

then 

u = sin 6’ 

The result mag be proved from the definition of the Foui-ier iiitcgd 

The physical interpretation of equation (11) is that a linear phase shift 
exp(- j h0 x/A) applied to an aperture distribution will shift the radiation 
pattern to the direction u0. Note that the shift is a function of u = sin 8 , not 
of e itself. 

V. -IMAGING PROPERTIES OF ANTENNAS 

The receiving antenna shown in Figure 7 may be treated as an optical image- 
forming system whose operation is described by the equation 

C(u’ - u) O ( u )  du 

12 



h A 

(a) aperture field 

ii x s i n @  . _  

(b) far-field radiation pattern 

A 
CP ( s i n  8 )  

t 

- - - 
2a a 2a 

(c) fur-field power pattern 

s i n  6 

X A 
(d) aperature autocorrelation function 

Figure 6 - Transforms of a Uniformly-Illuminated Aperture 
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Figure 7 - Scanning Antenna System 

where u = s i n  8, B is the observation angle, u' = s in  e', and O ' i s  the scan 
angle. The function C(u) is known in optics as the spread function and describes 
the distribution of light in the image plane due to a point source in the object 
plane. The equation yields the image I(u') of an object (or source) in terms of 
the source distribution function O(u) and the spread function. Sin 8 is used as 
the variable because the scanning is assumed to be performed electronically by 
producing a linear phaseshift across the aperture.(2) The physical interpreta- 
tion of the quantities I (u  ' ) , O(u), and G( u )  depends on the coherency of the 
source; the limiting cases of complete coherence (sources that emit signals 
differing only by a constant amplitude and phase factor) and complete incoherence 
(sources that emit statistically independent signals) will be treated. 

Coherent Source-For this case O(u) is the object field strength distribution 
as seen from the phase center of the antenna, C( u) is equal to the far-field am- 
plitude pattern A(u), and I(u' ) is the output voltage of the antenna as a function 
of the scan variable. It is convenient to extend the integration limits of 

(*)The image equation for a mechanically-scanned antenna i s  

instead of (12). For this type antenna there is no simple relation between the spread function and 
the aperture distribution. 
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equation (12) to infinity so that 

I ( u ' )  = A(u' - u )  O(u) du 

. 
which has the same form as the response of a linear circuit to an iuput time 
function. A(u j i s  analogous to the impulse response function of the circuit; the 
spaiial sigiiiih C(G> zd I(=) c n r r e s y ~ d  tn the input and output time signals 
respectively. The mtsma sys*nm *-, theref~re, may be represented by the spatial 
circuit shown in Figure 8. Analogous to the linearity and time-invariance condi- 
tions of temporal circuits we assume: 

A. The response of the antenna to several sources is the superposition of 
the responses to each of the sources separately. 

B. The response to a point source is independent of the direction of the 
source. This means that shifting the antenna pattern does not change its ampli- 
tude o r  shape. 

To see why A(u) is used as the impulse response function consider the 
response of the antenna to a point source in the direction uo . As the antenna 
scans past the source, its output will  trace out the far-field pattern of the 
antenna centered in the direction uo as shown in Figure 9. Mathematically, this 
method of measuring the radiation pattern may be expressed 

m 

A(u' - u )  S(u-uo) du = A(u' -uo) 

which is equivalent to stating that the impulse response function is the radiation 
pattern. 

Figure 8 - Spatial Circuit Representation of an Antenna System 
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A(u) = far-field (voltage) pattern 

O(u) = source distribution function 

I(u') = voltage output 

" 0  

Figure 9 - For the Derivation of the Impulse Response Function 
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The Fourier transform of equation (13) may be written as 

where the script letters represent the transformed functions and y is the trans- 
form variable. Equation (14) describes the performance of the antenna system 
in the y-domain and is ecpivaleot to the frequency-domain representation of 
t h e  sigiris k circzit thec?ry, By a m l w ,  the transform variable y is known 
as the sgath! freqG&ncy. 

The function q y )  may be identified a s  the transfer function of the antenna 
system and is defined by 

m 

A( u ) e J 2nuy du 

It has been shown, however, that the transform of the far-field pattern is equal 
to the aperture field distribution 

where c is a constant. Therefore, the system transfer function is the same as 
the aperture field; except for a constant, since both are related to the far-field 
pattern by a Fourier transform. m e  spatial frequency y must also be the same 
as the aperture variable x/A. 

Equation (14) indicates that the output of the antenna will be an exact replica 
of the source distribution function if A(y)  is a constant over the spatial frequency 
bandwidth of the source. Figure 10 shows the required transfer function for a 
source whose spectrum occupies a finite bandwidth. The required aperture 
distribution is found from G ( 7 )  by replacing y with the aperture variable x / h  . 
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I -  
source spectrum 

transfer function 

aperture field 

Figure 10 - Spatial Filter Characteristics of an Antenna 

The figure shows that spatial frequency bandwidth of an antenna is equivalent to  
the aperture size. 

Unlike time signals whose spectrums are band limited, spatial signals 
usually have spectrums covering essentially all spatial frequencies. The large 
bandwidth is caused by the small angular dimension of the source as seen by 
the antenna and is one of the most important differences between temporal and 
spatial signals. The most common source, a point source, has a spectrum that 
is constant over the entire band of spatial frequencies (4. a). Since the 
aperture is finite in extent (covering spatial frequencies from zero to some 
cutoff value), the output of the spatial filter with a point source input will be a 
distorted version of the source distribution function. Stated in another way, the 
source distribution function is "smoothed out" due to the low-pass spatial filter 
characteristic of the antenna. 
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It is interesting to see how the concept of a matched filter applies to an 
antenna. In circuit theory, a linear filter that maximizes the output signal-to- 
noise power ratio is termed a matched filter because its characteristics are 
determined by the signal to be detected. For white gaussian noise at the input, 
the transfer function of the filter should be proportional to the complex conjugate 
of the spectrum of the input signal. The requirement for an antenna to be a 
sptial matched filter, therefore, is 

o r  

E(:) = K@* (F) 

Le. the antenna aperture distribution should be the complex conjugate of the field 
produced by the source across the aperture. For a point source in the direction 
u O  

and the required aperture distribution is 

E(:) = K exp(-jmfu,,) 

An antenna with such an aperture distribution will track the point target in such 
a manner as to maximize the power received from the target relative to the 
background noise power. The physical interpretation of equation (15) is that 
the antenna should be electronically scanned toward the target. 

Incoherent Sources-For this case O(u) is the intensity (power) distribution 
of the source, G( u ) i s  the far-field power pattern 9(u), and I( u '  ) is the output 
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power of the antenna. The image equation becomes 

and the antenna may be represented as a spatial circuit with @(u) as the impulse 
response fimctima Ecpalion (16) roay le Fourier transformed to yield 

where the system transfer function, defined by 

m 

@(u) eJZnuy du , 

is the same as the aperture autocorrelation function, equation (lo), since both 
functions are the Fourier transform of the far-field power pattern. The spatial 
frequency y may be identified as the aperture variable S/h . 

By way of summary, there are two basic relations for an antenna that enable 
us to apply the concepts of communication theory to an antenna system: 

1. 

2. 

The image equation, (13), expresses an input-output relation which is 
similar to the input-output relation of a linear circuit. We are able, 
therefore, to treat the antenna a s  a black box and use the techniques of 
circuit analysis to analyze antenna systems. 

The transform relations, equations (7) and (€9, between the aperture 
distribution and the far-field pattern enable us to Fourier transform the 
image equation and relate the spatial frequency spectrums of the input 
and output signals. This furnishes an alternate method of describing 
antenna systems similar to the frequency domain representation of 
linear circuits. 

The above theory will be applied to two types of antenna systems in order 
to demonstrate the effectiveness of this technique for solving antenna problems. 

I 
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Analvsis of a Simde Interferometer 

. 
The simple interferometer shown in Figure 11 consists of a pair of identical 

antennas separated by a distance L and connected to a receiver by cables of 
equal length. The system is used to measure the source distribution function 
(which is related to the brightness temperature distribution) of an incoherent 
object such as the sun or  a radio star. If E(x/X) denotes the aperture field of 
one antenna located by itself at the origin and A,(u) its far-field amplitude 
pattern, then 

and 

X 

Figure 11 - Simple Interferometer 
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. 
The aperture field of the two-element interferometer is given by 

with a far-field amplitude pattern 

and a far-field power pattern 

Using equation (16) the output power of the interferometer is 

m 

Qo ( u ' -  u)  (1 i- cos[kL(u' -u)]}O(u) du t 17) 

where Qo(u) 
antenna when the object is a point source. Expanding equation (17) 

1/21 Ao(u)12 denotes the power fed to the receiver by a single 

W W 

Qo (u'  - u )  cos[kL(u' -u)] O(U) du 1- m Qo ( u ' -  u )  O(u) du + 

W m 

Qo (u' - u) cos(kLu) O(u) du I-. a,, (u'  - u)  O(u) du i- cos(kLu') - 

- I, 
m 

+ sin(kLu') Qo(u' -u) sin(kLu) O(u) du 
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We assume that the source is centered at u = u, and its width is narrow enough 
that Ao(u ' - u)  is effectively constant over the range of integration. Then 

m m 

1 - m  
O(U) du + @,(u' - uo) cos(kLu') O(U)  COS (kLu) du 

+ (11 '  - u )  sin(kLu') O(u) sin(kLu) du 
J-m 

+ a, (u' - u,) s i n ( b ' )  v s i n  a 

m 

I ( u ' )  = a, (u' - uo) l -mO(u) du + a, (u' - u,) Vcos(klu' -a) (18) 

where 

m 

O(u) cos(kLu) du 

m 

O(u) s in (k lu )  du 

Equation (18) shows that the output of the interferometer consists of a constant 
term equal to the power available from a single antenna and a sinusoidally- 
oscillating term whose amplitude and phase depend on the functions V and a. 
The output is plotted in Figure 12 for an arbitrary element pattern A, (u) . 
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i / /jq’ 
/ 

i I I 

\ 
I u’ 

uO L h - 4  2L 

Figure 12 - Sinusoidally-Oscillating Output of Interferometer 

Writing equation (19) in complex form 

and comparing this with the transform of the source distribution function 

m 

O(u) ej2*”y du 

shows that the output of the interferometer is a measurement of one Fourier 
component of O(u) at the spatial frequency Y = L / x  Measurements taken at all 
antenna spacings would yield the complete spectrum O( y) from which the true 
source distribution function could, in principle, be found by an inverse Fourier 
transformation. 
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Analvsis of a Nonlinear Antenna Svstem 

Consider next the array shown in Figure 13. The far-field pattern of antenna 
A is given by 

Antenna A Antenna B 

Low - Pa s s I Filter 
Figure 13 - A Nonlinear Antenna System 

where A(u) is the pattern when the antenna is located at the phase center of the 
array, x = 0.  Similarly, the pattern of antenna B is given by 
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The output of antenna A is 

I, ( u ' )  = CA (u' - u)O(u)  du I 

1, (U', t )  = Re (1. (U') .Jot} 

2rra 
IA(U'9 t) - A(u' -u)O(u) cos[wt - (u' -u)]du - I  

Similarly 

I B ( U ' ,  t )  = IB(.' - u ) O ( u ) c o s [ w t  + h 2rrb (u'-u)]du 

The output of the multiplier is 
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Q(u', t )  = A(u'- i  II ) B ( v ' - v )  O(u) O(v)  

1 - c o s b  - t 2rrb ( v ' - v )  dudv 

The output of the low-pass filter is given by 

A(u'-u)O(u)B(v'-v)O(v)cos[~(u'-u)+~(~'-v)ldudv 3rrb 

If antenna B is located at the phase center of the array, then b = Oand 

I ( u ' ,  t )  = ;]b(u' -u)O(u)B(v'-  v) O ( v ) c o s [ F  ( u t - u l d u d v  

Assume next that antenna B is omnidirectional so that the second integral of (20) 
is a constant. Then 

I(u' ,  t )  = K A(u' - u )  O(u) cos[? (u' - u)]du I 
If antenna A is a uniformly-illuminated line source of length 2a, 

1 s i n ( h F )  
A(u) = 
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and 

o r  

I(u', t) = K %(u' -u) O(u) du 

Equation (21) is the expression for the output of a uniformly-illuminated line 
source of length 4a. The imaging properties of the nonlinear antenna system, 
therefore, are the same as those of a linear array with twice the overall aperture 
size. 
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